A Simple Guide to

Assessing Student Learning Outcomes for Continuing Program Improvement

Fall 2005

Prepared by:

Dr. Abigail Panter, Academy of Distinguished Teaching Scholars
Dr. Ed Neal, Center for Teaching and Learning
Dr. Lynn Williford, Institutional Research & Assessment
Assessing Student Learning Outcomes for Continuing Program Improvement

Introduction

Nearly all higher education accrediting bodies now require institutions to regularly assess the extent to which students are actually acquiring the knowledge and skills intended by their programs, and to document how the results are being used for continuous program improvement purposes. The Southern Association of Colleges and Schools (SACS) standard reads: "The institution demonstrates that each educational program for which academic credit is awarded... establishes and evaluates program and learning outcomes."

Assessment activities have the potential to generate rich information that can be used by program faculty to improve teaching and learning. However, departmental faculty and administrators are continuously being asked to respond to new mandates while dealing with dwindling resources, and the thought of initiating an ongoing cycle of assessment activities can seem quite daunting.

This document is an effort to provide practical information on planning for and administering student learning outcomes assessment at the program level. We offer here an incremental approach that we hope you will find feasible in terms of keeping the process simple and spreading the data collection over multiple years to keep the work manageable. The steps recommended here were derived from experiences shared by colleagues at other institutions who were faced with similar requirements to create an assessment program, websites devoted to the topic of student learning outcomes, conference presentations on best practices, and publications.

We encourage you to contact us for assistance with this process at any time. Our staff is available to visit with you and your colleagues, review drafts of assessment plans, provide technical assistance in data collection, or identify faculty at other institutions that you might contact to learn how others have approached this task.

Abigail Panter
Professor, Dept of Psychology
Academy of Distinguished Teaching Scholars
panter@unc.edu
962-4012

Ed Neal
Director of Faculty Development
Center for Teaching and Learning
ed_neal@unc.edu
966-1289

Lynn Williford
Assistant Provost for Institutional Research & Assessment
lynn_williford@unc.edu
962-1339
Some Basic Questions and Answers

What do you mean by “assessment”? Don’t we already assess individual students’ performances in our classes, labs, internships, etc.?

There are many different uses of the term “assessment.” In this context, we are using “assessment of student learning outcomes” to refer to the process of gathering and reviewing evidence to determine the extent to which students who matriculate through the program are achieving the major educational outcomes intended by the faculty. The primary difference between assessment in this sense and the type of assessment that we do when we grade an individual student’s test or paper is how the results are analyzed and used. The unit of analysis in learning outcomes assessment is the program, not individual students. Data on student performance are gathered and reviewed in the aggregate for the purpose of evaluating how well the learning goals of the program are being accomplished and if specific improvements should be made. In contrast, assessment of individual student performance – typically in the form of course grades – is conducted to provide feedback to students about their progress.

In short, “assessing learning outcomes” is a form of program evaluation. Individual student performance data can be aggregated for use as evidence for assessment/program evaluation purposes. To be useful in this context, however, the performance data would need to: (1) be rated using agreed-upon, standard criteria, and (2) be "rolled up" and analyzed at the program level. More on how to assess student performance so that it can be used to evaluate the program is contained in later sections of this document.

What is a “learning outcome”? How is an outcome different from a goal or objective?

While often these terms are used interchangeably, an outcome differs from a goal or objective in terms of specificity. Learning outcomes describe measurable knowledge, skills, and behaviors that students should be able to demonstrate as a result of completing the program. Goals and objectives are typically broader statements of program purpose that are more difficult to measure, such as "providing a comprehensive liberal arts education," "producing quality scientists for the twenty-first century," etc.

What is a “Program”?

For purposes of student learning outcomes assessment, the University of North Carolina at Chapel Hill has defined a “program” as an organized, credit-bearing course of study that generally results in a degree or certificate at the undergraduate, graduate, or professional level. For example, the Department of English would be expected to document their assessment processes and results for the following three programs separately: the A.B. in English, the M.A. in English, and the PhD in English. The current expectation of the Executive Vice Chancellor and Provost is that the minimum unit of analysis for assessment purposes is the degree major. Decisions to assess outcomes within other meaningful units – such as minors, concentrations, or program tracks – are the discretion of the deans.
Steps in Planning and Implementing Student Learning Outcomes Assessment at the Program Level

1. Begin with a brief statement of the mission and general goals for the program.

 • A brief description of the purpose of the program (usually a paragraph)

 • Can include statements about:
 o Educational values;
 o Major bodies of knowledge covered in the curriculum;
 o What the program prepares students for (e.g., graduate study)

 • Examples taken from UNC-Chapel Hill websites:

 Art History:

 The undergraduate program in art history is directed toward two primary educational goals: (1) to acquaint students pursuing a Liberal Arts degree with the historical significance, cultural diversity, and intellectual richness of human artistic traditions from prehistoric times to the present, and (2) to provide those students with the intellectual tools needed to investigate the complex roles played by the arts in a variety of social contexts. The skills students develop through the study of art history include visual analysis, historical research, critical reading, analytical and descriptive writing, and oral communication. The study of art history fully complements students' work in other Humanities and Social Sciences disciplines represented in the College of Arts and Sciences, including history, classics, archaeology, religious studies, anthropology, sociology, and communication studies. Ultimately, the curriculum designed by the Department of Art seeks to help students acquire an individual perspective on their own values and beliefs and on their places in a society increasingly shaped by visual communications and technology.

 Philosophy

 Philosophical reflection on fundamental questions of reality, knowledge, and value is an essential element of human culture and a liberal education. The Department of Philosophy is committed to advancing and transmitting an understanding of these questions and the history of struggles to answer them, and to developing analytical and critical resources for engaging these questions as they arise in individual and common experience. At the undergraduate level this commitment finds expression in a broad spectrum of courses taught by a distinguished, internationally recognized, faculty. The department offers a substantial major in philosophy which serves as an excellent foundation for more specialized training in philosophy or other graduate and professional disciplines, such as law, medicine, business and management.

2. Identify the intended student learning outcomes of the program.

 • In the eyes of your department, what should a student be able to know, think, do, or value as a result of completing your program of study? Learning outcomes should be clearly stated in measurable terms. Producing "educated persons" or an "ethical individuals" or a "good citizens" might be worthy goals for higher education, but such terms need to be operationalized in order to be measured if the results are going to be useful in guiding decisions about improving programs.
Initially, we suggest that you select about 3–6 of the most important learning outcomes. More are acceptable, but the practical ability of program faculty to adequately measure, analyze, and reflect upon the results becomes compromised when there are too many. A reasonable target might be to plan to assess at least one major outcome per year, depending upon the intensity of effort needed for the specific methods selected.

An Example
The following learning outcomes were selected for illustrative purposes from the much more detailed list of goals and outcomes listed in the American Psychological Association’s Task Force on Psychology Undergraduate Major Competencies: Psychology Major Learning Goals and Outcomes (2002). The complete report is available online at http://www.apa.org/ed/ocue/taskforcerport2.pdf.

Knowledge Base of Psychology: Students will be able to identify and explain the primary objectives of psychology: describing, understanding, predicting, and controlling behavior and mental processes.

Research Methods in Psychology: Students will demonstrate the ability to design and conduct basic studies to address psychological questions using appropriate research methods, data analysis, and interpretation.

Critical Thinking Skills in Psychology: Students will use reasoning to recognize, develop, defend, and criticize arguments and other persuasive appeals.

Application of Psychology: Students will be able to identify appropriate applications of psychology in solving problems and addressing personal, social, and organizational issues.

Values in Psychology: Students will demonstrate the ability to weigh evidence, tolerate ambiguity, act ethically, and reflect other values that are the underpinnings of psychology as a discipline.

3. Where can we collect data on student learning outcomes? Think about student “work products.” What are your majors actually producing as part of your department’s curriculum on their way to graduation?
 • They take tests in certain content domains required for majors.
 • They write papers for key content courses in the major.
 • They conduct independent research projects.
 • They give presentations and performances as part of final projects.
 • They participate in certain experiences that are valued by your department, such as capstone experiences or field or service learning work.
 • They prepare portfolios to summarize their work at the end of the year.
 • They write thought papers where they reflect on what, how, and why they learned.

4. Map your department’s student learning outcomes to useful and feasible program assessment approaches.

How can you demonstrate that undergraduates in your major are producing high quality work that is consistent with the learning objectives of your department?

• Course grades are poor measures of learning outcomes for several reasons:
 • Since grading criteria and standards are matters decided by the individual instructor, the grades in one course cannot be assumed to be equivalent to grades in other courses.
 (There is no “gold standard” to which all teachers adhere.)
• The tests, assignments, projects, and papers in a course may not measure the program outcomes of interest to the department. However, it is possible with careful planning to map specific course assignments to program-level learning outcomes and to develop standard measures of performance that allow the results to be aggregated and reviewed as outcomes data. For example, final papers in capstone courses can be graded using a common rubric that anchors the ratings to specific performances on certain dimensions, such as critical thinking.

• Some instructors' grading schemes include a variety of factors such as class participation, adherence to deadlines, and attendance. Therefore, the final grade represents a range of student performance other than the strict achievement of learning goals or program outcomes.

• Using **multiple methods** of assessing outcomes is highly recommended. For example, administering a subject area test along with observing performance in a simulated situation provides feedback on both knowledge and application of content information.

• **Direct assessments** examine student work products straight from the source – the student.

• **Indirect assessments** examine secondary information about what students have learned (e.g., student opinions about what they learned, student ratings of instruction, course-taking patterns within a department). Often, indirect assessments provide feedback that is useful in interpreting results of direct assessments or suggesting how processes might be improved to enhance learning. For example, if direct methods revealed that students were not achieving the desired outcomes in a specific area of the curriculum, perhaps an examination of teaching evaluations or interviews with students might provide clues for improving learning conditions.

• **Some commonly used evaluation techniques do not measure student learning.** For example, student ratings of instruction focus on perceptions of the quality of instruction received – i.e., the teaching is being rated and not the learning. These instruments sometimes include items that might be used as indirect methods of assessing learning, such as student self-assessments of their gains in knowledge or skills as a result of taking the course.

We recommend that you attempt to use mostly direct assessment techniques, but encourage you to supplement those with indirect assessment methods to the extent that you find the data useful in improving learning in your discipline.

The following matrices provide a number of potential methods for assessing learning outcomes. Note that the direct/indirect characteristic of the assessment technique depends on the outcome being assessed. For example, an objective test might provide direct feedback for determining subject area knowledge, but would provide at best only indirect information on students' ability to think critically and apply knowledge in ambiguous situations.

<table>
<thead>
<tr>
<th>Student Learning Outcomes. Our undergraduate majors should:</th>
<th>More Direct Assessments</th>
<th>More Indirect Assessments</th>
</tr>
</thead>
</table>
| Show proficiency or knowledge in a particular content domain to proceed in the major | Expert panel of independent judges using a predetermined set of criteria to rate and evaluate a random sample of:
- Individual projects or other written projects
- Oral presentations
- Graphic tests and posters
- Group teams
- Research projects
- Structural/situational assessments | Summative performance assessment
Self-assessment/reflection
Collaboration
Attitudinal surveys of students, alumni
Focus groups
Archival measures, alumni databases
Syllabus audit
Exit interviews |

Other Assessment Approaches
- Classroom Assessment techniques (e.g., thought papers)
- Classroom/Course data
- Embedded questions and assignments
- Essay tests
- Objective tests
- Transcript analysis
| Student Learning Outcomes.
Our undergraduate majors should: | More Direct Assessments | More Indirect Assessments |
|-------------------------------|-------------------------|---------------------------|
| Show proficiency in research methods in the content domain | Expert panel of independent judges using a predetermined set of criteria to rate and evaluate a random sample of:
 - Individual projects or other written projects
 - Oral presentations
 - Graphic tests and posters
 - Written projects from capstone experiences
 - Structural/situational assessments
 - Portfolios
 - Research projects | - Classroom/Course data
- Objective tests
- Essay tests
- Classroom Assessment techniques
- Summative performance assessment
- Standardized tests
- Locally developed tests
- Internships
- Case and longitudinal studies of knowledge
- Group teams
- Self-assessment/reflection
- Online activities
- Attitudinal surveys of students, alumni
- Focus groups
- Archival measures, alumni databases
- Syllabus audit
- Exit interviews |
| Other Assessment Approaches
 - Embedded questions and assignments
 - Satisfaction surveys from employers, graduate schools, or other stakeholders
 - Performance reviews
 - Transcript analysis | |
| Show critical thinking skills in a particular content domain | Expert panel of independent judges using a predetermined set of criteria to rate and evaluate a random sample of:
 - Individual projects or other written projects
 - Oral presentations
 - Graphic tests and posters
 - Written projects from capstone experiences
 - Structural/situational assessments
 - Portfolios
 - Research projects
 - Group projects
 - Collaboration | |
| Other Assessment Approaches
 - Essay tests
 - Embedded questions and assignments | |
| Student Learning Outcomes.
Our undergraduate majors should: | More Direct Assessments | More Indirect Assessments |
|-----------------------------------|-------------------------|--------------------------|
| Understand and apply issues from content area | Expert panel of independent judges using a predetermined set of criteria to rate and evaluate a random sample of:
- Individual projects or other written projects
- Oral presentations
- Graphic tests and posters
- Written projects from capstone experiences
- Structural/situational assessments
- Portfolios
- Research projects
- Group projects, research teams
- Internships or professional applications |
- Classroom/Course data
- Objective tests
- Classroom Assessment techniques
- Summative performance assessment
- Standardized tests
- Locally developed tests
- Internships
- Online activities
- Attitudinal surveys of students, alumni
- Focus groups
- Archival measures, alumni databases
- Syllabus audit
- Exit interviews
- Transcript analysis
- Collaboration |
<table>
<thead>
<tr>
<th>Student Learning Outcomes. Our undergraduate majors should:</th>
<th>More Direct Assessments</th>
<th>More Indirect Assessments</th>
</tr>
</thead>
</table>
| Should understand certain values of the discipline (e.g., ethics, intellectual curiosity, evaluate scientific evidence) | Expert panel of independent judges using a predetermined set of criteria to rate and evaluate a random sample of:
• Individual projects or other written projects
• Oral presentations
• Written projects from capstone experiences
• Structural/situational assessments
• Portfolios
• Research projects
• Internships or professional applications | Classroom/Course data
• Objective tests
• Essay tests (unless directly on topic)
• Embedded questions and assignments (unless directly on topic)
• Classroom Assessment techniques
• Graphic tests and posters
• Summative performance assessment
• Standardized tests
• Locally developed tests
• Internships
• Online activities
• Attitudinal surveys of students, alumni
• Focus groups
• Archival measures, alumni databases
• Syllabus audit
• Transcript analysis
• Collaboration
• Self-assessment/reflection
• Group projects, research teams
• Syllabus audit |
<table>
<thead>
<tr>
<th>Student Learning Outcomes. Our undergraduate majors should:</th>
<th>More Direct Assessments</th>
<th>More Indirect Assessments</th>
</tr>
</thead>
</table>
| Show technological literacy in the field | Expert panel of independent judges using a predetermined set of criteria to rate and evaluate a random sample of:
 - Individual projects or other written projects
 - Oral presentations
 - Written projects from capstone experiences
 - Structural/situational assessments
 - Portfolios
 - Research projects
 - Research teams | Classroom/Course data
 - Objective tests
 - Essay tests (unless directly on topic)
 - Classroom Assessment techniques
 - Graphic tests and posters
 - Summative performance assessment
 - Standardized tests
 - Locally developed tests
 - Internships
 - Online activities
 - Attitudinal surveys of students, alumni
 - Focus groups
 - Archival measures, alumni databases
 - Syllabus audit
 - Transcript analysis
 - Collaboration
 - Self-assessment/reflection
 - Group projects, research teams
 - Syllabus audit
 - Internships or professional applications
 - Case and longitudinal studies |
| Other Assessment Approaches | Embedded questions and assignments
 - Self-critiques
 - Satisfaction surveys
 - Focus groups
 - Performance reviews
 - Exit interviews |
<table>
<thead>
<tr>
<th>Student Learning Outcomes. Our undergraduate majors should:</th>
<th>More Direct Assessments</th>
<th>More Indirect Assessments</th>
</tr>
</thead>
</table>
| Show communication skills | Expert panel of independent judges using a predetermined set of criteria to rate and evaluate a random sample of:
 - Individual projects or other written projects
 - Oral presentations
 - Written projects from capstone experiences
 - Structural/situational assessments
 - Portfolios
 - Research projects
 - Structural/situational assessments
 Other Assessment Approaches
 - Classroom/Course data
 - Essay tests
 - Embedded questions and assignments
 - Classroom Assessment techniques
 - Self-assessment/reflection
 - Performance reviews
 - Exit interviews |
 - Objective tests
 - Graphic tests and posters
 - Summative performance assessment
 - Standardized tests
 - Locally developed tests
 - Internships
 - Online activities
 - Attitudinal surveys of students, alumni
 - Focus groups
 - Archival measures, alumni databases
 - Syllabus audit
 - Transcript analysis
 - Collaboration
 - Group projects, research teams
 - Syllabus audit
 - Internships or professional applications
 - Case and longitudinal studies |
Sample Assessment Plan and Report:
B.A. in Philosophy

NOTE: PROVIDED FOR ILLUSTRATION ONLY; ACTUAL REPORTS SHOULD CONTAIN SOMEWHAT MORE DETAIL CONCERNING PROCEDURES, RESULTS AND USE OF RESULTS.

Mission/Goals Statement: To develop students' abilities to think critically and systematically about philosophical problems, both abstract and practical; to develop students' understanding of the history and current state of philosophy; to develop students' appreciation of a diversity of viewpoints, cultural, political and religious as well as purely philosophical.

<table>
<thead>
<tr>
<th>Intended Student Learning Outcomes</th>
<th>Assessment Procedures</th>
<th>Assessment Results</th>
<th>Use of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Students will demonstrate facility with the methods of modern, analytic philosophy.</td>
<td>Analysis of a sample of senior capstone course papers by a team of 3 faculty; papers will be rated using a rubric developed to evaluate specific methodology skills. Spring 2005, 2008</td>
<td>80% of papers revealed high level of proficiency in use of methods.</td>
<td>No action indicated.</td>
</tr>
<tr>
<td>2. Students will be able to discuss current academic perspectives on central philosophical topics.</td>
<td>Analysis of a sample of student presentations in PHIL 400 “Senior Seminar on Current Issues in Philosophy” by a panel of faculty. Spring 2006, 2009</td>
<td>60% of presentations indicated high level of content knowledge.</td>
<td>Faculty discussions of results led to increasing this course from one credit hour to three in order to expand coverage of current issues.</td>
</tr>
<tr>
<td>3. Students will be able to discuss major themes and movements in the history of philosophy.</td>
<td>Analysis of a sample of student papers in PHIL 402 “Senior Seminar in History of Philosophy” Spring 2007, 2010</td>
<td>90% of papers demonstrated adequate coverage and understanding of major historical themes.</td>
<td>No action indicated.</td>
</tr>
<tr>
<td>4. Students will be able to construct logical and coherent arguments to support diverse cultural, political, religious, and philosophical viewpoints.</td>
<td>Analysis of a sample of senior capstone course papers by a team of 3 faculty; papers will be rated using a rubric developed to evaluate quality of writing, strength of argument, use of references and resources. Spring 2005, 2008</td>
<td>25% of papers indicated weaknesses in ability to integrate diverse viewpoints.</td>
<td>Faculty discussions of results led to review of junior-level courses and (insert details...).</td>
</tr>
</tbody>
</table>

Other Outcomes:

<table>
<thead>
<tr>
<th>Students will report satisfaction with Philosophy program</th>
<th>Senior survey results (even years)</th>
<th>65% of students reported being "very satisfied" with quality of instruction and overall quality of education in the major.</th>
<th>After review of results, focus groups were held with seniors to understand concerns.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will be successful in gaining admission to graduate and professional schools.</td>
<td>Alumni surveys (every third year)</td>
<td>40% of respondents reported enrollment in graduate or professional school</td>
<td>No action indicated.</td>
</tr>
</tbody>
</table>
5. Make decisions about the logistics for each assessment.
 - How often will the assessment be conducted?
 - Which learning experiences will be included in the assessment?
 - If a sample of work or papers will be evaluated, what size sample will be drawn, and how will it be drawn?
 - Who will develop the scoring rubric for each assessment?
 - What steps will be taken to protect the identity of students whose work will be judged?
 - Who will conduct the assessment? How many judges will there be, and how will these judges be selected?
 - Who will ensure that the assessments will take place in a timely way?
 - Who will store and analyze the data once the assessments have been made?
 - How will the data be reported?

6. If you choose to have judges rate student work, develop a clear rubric for these evaluations.
 - What 5-10 common dimensions or attributes should be present in the student work?
 - What skills (consistent with the learning goals) should students have demonstrated by completing the assignment, project, or course?

 Example 1
 The rubric used by grant review panels at the National Institutes of Health to evaluate research proposals

 1. Significance. Does this study address an important problem? If the aims of the application are achieved, how will scientific knowledge be advanced? What will be the effect of these studies on the concepts or methods that drive this field?
 2. Approach. Are the conceptual framework, design (including composition of study population), methods, and analyses adequately developed, well-integrated, and appropriate to the aims of the project? Does the applicant acknowledge potential problem areas and consider alternative tactics?
 3. Innovation. Does the project employ novel concepts, approaches or methods? Are the aims original and innovative? Does the project challenge existing paradigms or develop new methodologies or technologies?
 4. Investigator. Is the investigator appropriately trained and well suited to carry out this work? Is the work proposed appropriate to the experience level of the principal investigator and other researchers (if any)?
 5. Environment. Does the scientific environment in which the work will be done contribute to the probability of success? Do the proposed experiments take advantage of unique features of the scientific environment or employ useful collaborative arrangements? Is there evidence of institutional support?
 6. Overall Evaluation. Score the proposal to reflect the overall impact of the project on the field, weighting the review criteria, as you feel appropriate for each application. An application does not need to be strong in all categories to be judged likely to have a major scientific impact and, thus, deserve a high merit rating. For example, an investigator may propose to carry out important work that by its nature is not innovative, but is essential to move a field forward.

 Each of these dimensions can be rated on the following scale:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outstanding</td>
<td>Excellent</td>
<td>Good</td>
<td>Fair</td>
<td>Poor</td>
</tr>
</tbody>
</table>
Example 2

This rubric is used to evaluate final research projects involving empirical data. Specific definitions for each section can be determined by the panel of judges.

1. Abstract
2. Introduction
3. Experimental Hypotheses
4. Method
 a. Participants
 b. Materials
 c. Procedures
5. Results and Interpretation
 a. Descriptive information about variables
 b. Independent groups t-tests
 c. Analysis of Variance
 d. Correlations
 e. Chi-square
6. Discussion and Conclusion
7. Computer Syntax
8. APA Format
9. Overall Evaluation

Each of these dimensions can be rated on the following scale:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
<td>Excellent</td>
<td>Outstanding</td>
</tr>
</tbody>
</table>
7. Develop a plan for assessment that identifies methods to be used and a tentative schedule. Recommendations for a first assessment cycle plan:

- Develop (or pull from existing catalog or website materials) a brief mission statement for the program – a paragraph is sufficient.

- Choose 3-6 of the most important learning outcomes for each degree program.

- Design at least one direct assessment of student learning for each learning outcome. Multiple methods are most informative, but keep time constraints in mind. The plan does not have to include complete methodological details on each assessment, but should include a basic description of where in the curriculum the outcome will be assessed (e.g., capstone course, internship, etc.), what work products will be assessed (papers, presentations, performances, etc.), how the work will be evaluated (e.g., with a rubric, by a team of external reviewers, etc.), and any known criteria that would define success or signal the need for action. The first year of assessing outcomes might be used to gather baseline data that would then be used to set criteria for later administrations or chart improvement.

- Indirect assessment methods can be included in your plan along with direct methods. The Office of Institutional Research and Assessment can help you in taking advantage of existing survey data collected on your majors, or help you design and administer other types of data collection such as alumni surveys, student interviews, etc.

- Determine roughly when you plan to conduct each of the assessments over the next four or five years. The goal should be to assess at least one of your major learning outcomes per year, so that you are collecting and reflecting upon manageable portions of feedback about program quality on an ongoing basis.

- Plans can and should be revised over time as you learn more about the effectiveness of various assessment approaches in providing useful information for program improvement.

2005-06 Assessment Cycle Timelines

February 6, 2005: Any updates to reports on the results or use of results from 2004-05 assessments should be filed with the Dean’s Office for inclusion in the SACS report. Revised or updated assessment plans should be forwarded to the appropriate Senior Associate Dean in the College of Arts & Sciences. See attached reporting template.

Spring 2006 – Summer 2006: Department faculty collect data to assess at least one learning outcome and analyze results.

Early Fall 2006: Departmental discussions about implications of the assessment findings and decisions about any necessary actions needed to improve programs.

October 2, 2006: Brief report on 2005-06 assessment findings and how results of previous assessments are being used for program improvement should be forwarded to the Senior Associate Dean.